Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(17): 26444-26455, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615079

RESUMO

A low-refractive-index grating layer with symmetrical triangular/trapezoidal grooves covered with a high-refractive-index Si layer is used to design a broadband guided-mode resonant reflector. Software Rsoft is used to simulate the reflection and transmission spectra as well as the internal electric field distribution at the resonant wavelength. It is discovered that the interaction between resonant modes promotes the formation of a wideband spectrum. The reflector has been proven to provide wideband (Δλ > 450 nm) and high reflectivity (R > 98.4%) spectra over a wide range of base angles from 44° to 72°, and the maximum high reflectivity (R > 99%) spectral range in transverse electric polarization is 458 nm, spanning 1422 to 1880nm. The results not only demonstrate excellent tolerance to the base angle and grating depth but also provide more possibilities for the design of broadband reflectors.

2.
Sci Total Environ ; 773: 145476, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588219

RESUMO

Magnetic field (MF) has been applied widely and successfully as an efficient, low-cost and easy-to-use technique to enhance wastewater treatment (WWT) performance. Although the effects of MF on WWT were revealed and summarized by some works, they are still mysterious and complex. This review summarizes the application of MF in magnetic adsorption-separation of heavy metals and dyes, treatment of domestic wastewater and photo-magnetic coupling technology. Furthermore, the mechanisms of MF-enhanced WWT are critically elaborated from the perspective of magnetic physicochemical and biological effects, such as magnetoresistance, Lorentz force, and intracellular radical pair mechanism. At last, the challenges and opportunities for MF application in WWT are discussed. For overcoming the limitations and taking advantages of MFs in WWT, fundamental research of the mechanisms of the application of MFs should be carried out in the future.

3.
Sci Total Environ ; 765: 142795, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33572034

RESUMO

Volumes of oily wastewater are inevitably generated by every walk of life. The removal of oil particles from oil-contaminated wastewater which is characterized as huge amounts, intricate composition, and great threats to human health and the ecological environment is a research hotspot in water treatment fields. Due to high treatment costs and undesirable treatment efficiencies, oily wastewater treatment remains a topical and urgent issue. At present, coagulation/flocculation as an indispensable oily wastewater treatment technology receives much attention because it is very well established, economical, practical and relatively efficient. The influencing factors of oil wastewater treatment by coagulation/flocculation have also been summarized in-depth, like dosage, pH, etc. In consideration of its complex composition and treatment difficulty, this paper will also compare the treatment effects of different coagulants/flocculants used alone and combined effects in oily wastewater treatment: inorganic coagulants, organic synthetic polymeric flocculants, natural flocculants and modified polymeric flocculants. Additionally, in this review, the mechanisms of removing oily substance by coagulation/flocculation are emphasized. Given strict emission standards and the refractory nature of oily wastewater, the combination process with coagulation/flocculation, such as electrocoagulation, coagulation-membrane filtration hybrid process, and coagulation/flocculation-flotation can present better application potential and are discussed in this review. To provide a proper choice in practical application, the operating cost of coagulation and several conventional technologies are also compared. Finally, the existing challenges in the treatment of oily wastewater by coagulation are analyzed, and the feasible research direction is proposed.

4.
Chemosphere ; 272: 129521, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33485044

RESUMO

COD to ammonium nitrogen (C/N) ratio and dissolved oxygen (DO) concentration are the most important factors affecting aerobic denitrification process, however, the effects of those on the mix-cultured aerobic denitrification process are still ambiguous. A mathematical model based on the framework of activated sludge model No. 3 (ASM3) was proposed for simulating nitrogen removal in an aerobic denitrification SBR process via anoxic/aerobic denitrification. AQUASIM 2.1G was employed for parameter estimation, sensitivity analysis and model calibration, as well as model validation. Ultimately, the impacts of the C/N ratio and the DO concentration on the aerobic denitrification process were revealed by the validated model. The model proposed well described nitrogen removal in an aerobic denitrification SBR process. The total nitrogen (TN) removal efficiency of the process increased with the increasing of C/N ratio and the decreasing of DO concentration. C/N ratio impacted the synthesis of cell internal storage products (XSTO), and the effects of DO concentration on the process resulted from the competition with substrate between heterotrophs and aerobic denitrifiers. High C/N ratio was preferred, however, the DO concentration should be maintained at a relatively lower level under the premise of ensuring the aerobic condition.


Assuntos
Desnitrificação , Oxigênio , Reatores Biológicos , Modelos Teóricos , Nitrificação , Nitrogênio , Esgotos
5.
Chemosphere ; 263: 127943, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32822939

RESUMO

Due to the characteristics of both rare earth elements (REEs) and nanoparticles (NPs), Y2O3 NPs have been widely used in the fields of medicine, military industry, and agriculture, especially in the areas of electricity, light, magnetism, and catalysis. Given this widespread use, it is inevitable that Y2O3 NPs and soluble Y3+ will enter bodies of water through the processes involved in their preparation, application, and disposal. We sought to investigate the toxicities of Y2O3 NPs and Y3+ ions on rice seedlings (Oryza sativa L.), as well as the uptake and distribution of Y2O3 NPs under hydroponic conditions. Our results indicated that Y2O3 NPs and released Y3+ had no significant effect on the germination rate of rice. However, high concentrations of Y2O3 NPs (50 and 100 mg/L) delayed seed germination. As for rice root elongation, low concentrations (1, 5, and 10 mg/L) of Y2O3 NPs had a positive effect. Notably, when Y2O3 NPs concentration reached 20 mg/L and higher, root elongation was significantly inhibited. According to the physiological and biochemical characteristics of rice seedlings under Y stress, Y2O3 NPs ranging from 20 to 100 mg/L significantly reduced chlorophyll contents and root activity. Using ICP-MS and TEM analyses, Y2O3 NPs and Y3+ were shown to be mainly absorbed and accumulated in the roots. With Y2O3 NPs exposure, the Y transport coefficient from the roots to the shoots of rice was 1.94-7.55%. Comparatively, Y3+ ions had an insignificant effect on plant growth, with the phytotoxicity of Y being mainly produced by Y2O3 NPs.


Assuntos
Nanopartículas/toxicidade , Oryza/fisiologia , Transporte Biológico , Clorofila , Cultura , Germinação/efeitos dos fármacos , Hidroponia , Íons/farmacologia , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos
6.
Chemosphere ; 263: 128120, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297112

RESUMO

An easily separation composite, magnetic chitosan@bismuth tungstate coated by silver (MCTS-Ag/Bi2WO6), was successfully synthesized by the simple hydrothermal method. Moreover, the MCTS-Ag/Bi2WO6 demonstrated excellent adsorption/photocatalytic removal of Cu(II) in aqueous solution. Adsorption played a leading role in the synergistic reaction. The catalysts were characterized by fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The effects on adsorption of Cu(II) were investigated, which included illumination, pH, and initial concentration. The experimental results showed that the theoretical maximum adsorption capacity of Cu(II) (181.8 mg/g) was achieved under simulated solar light irradiation with the optimal pH value of 6.0, indicating that illumination could enhance the adsorption of Cu(II) by MCTS-Ag/Bi2WO6. Meanwhile, the composite exhibited desirable adsorption ability of Cu(II) after 5 cycles. The copper ion adsorption fitted well with pseudo-second-order kinetic model and its isotherm followed Freundlich model.


Assuntos
Quitosana , Prata , Adsorção , Bismuto , Cobre , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Tungstênio , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...